A partially penalty immersed Crouzeix-Raviart finite element method for interface problems
نویسندگان
چکیده
منابع مشابه
A partially penalty immersed Crouzeix-Raviart finite element method for interface problems
The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matri...
متن کاملA FETI-DP Method for Crouzeix-Raviart Finite Element Discretizations
This paper is concerned with the construction and analysis of a parallel preconditioner for a FETI-DP system of equations arising from the nonconforming Crouzeix-Raviart finite element discretization of a model elliptic problem of second order with discontinuous coefficients. We show that the condition number of the preconditioned problem is independent of the coefficient jumps, and grows only ...
متن کاملPartially Penalized Immersed Finite Element Methods For Elliptic Interface Problems
This article presents new immersed finite element (IFE) methods for solving the popular second order elliptic interface problems on structured Cartesian meshes even if the involved interfaces have nontrivial geometries. These IFE methods contain extra stabilization terms introduced only at interface edges for penalizing the discontinuity in IFE functions. With the enhanced stability due to the ...
متن کاملPartially Penalized Immersed Finite Element Methods for Parabolic Interface Problems
We present partially penalized immersed finite element methods for solving parabolic interface problems on Cartesian meshes. Typical semi-discrete and fully discrete schemes are discussed. Error estimates in an energy norm are derived. Numerical examples are provided to support theoretical analysis.
متن کاملAdditive Schwarz methods for the Crouzeix-Raviart mortar finite element for elliptic problems with discontinuous coefficients
In this paper, we propose two variants of the additive Schwarz method for the approximation of second order elliptic boundary value problems with discontinuous coefficients, on nonmatching grids using the lowest order Crouzeix-Raviart element for the discretization in each subdomain. The overall discretization is based on the mortar technique for coupling nonmatching grids. The convergence beha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2017
ISSN: 1029-242X
DOI: 10.1186/s13660-017-1461-5